Ultrafast Laser Energy Density and Retinal Absorption Cross-Section Determination by Saturable Absorption Measurements

نویسندگان

  • Alfons Penzkofer
  • Meike Luck
  • Tilo Mathes
  • Peter Hegemann
چکیده

Laser pulse nonlinear transmission measurements through saturable absorbers of known absorption parameters allow the measurement of their energy density. On the other hand, nonlinear transmission measurements of laser pulses of known energy density through absorbing media allow their absorption parameter determination. The peak energy density w0P of second harmonic pulses of a mode-locked titanium sapphire laser at wavelength λP = 400 nm is determined by nonlinear energy transmission measurement TE through the dye ADS084BE (1,4-bis(9-ethyl-3-carbazovinylene)-2-methoxy-5-(2’-ethyl-hexyloxy)-benzene) in tetrahydrofuran. TE(w0P) calibration curves are calculated for laser pulse peak energy density reading w0P from measured pulse energy transmissions TE. The ground-state absorption cross-section σP and the excited-state absorption cross-section σex at λP, and the number density N0 of the retinal Schiff base isoform RetA in pH 7.4 buffer of the blue-light adapted recombinant rhodopsin fragment of the histidine kinase rhodopsin HKR1 from Chlamydomonas reinhardtii were determined by picosecond titanium sapphire second harmonic laser pulse energy transmission measurement TE through RetA as a function of laser input peak energy density w0P. The complete absorption cross-section spectrum σλ of RetA was obtained by absorption coefficient spectrum measurement αλ and normalization to the determined absorption cross-section σP at λP [σ(λ) = α(λ)σP/αP].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation

Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...

متن کامل

Development of ultrashort pulse fiber lasers for optical communication utilizing semiconductor devices

The nonlinear reflectivity of semiconductor saturable absorber mirrors is investigated with ultrafast time-resolved and time-averaged reflectivity measurements. The relative contributions of absorption bleaching and induced absorption are studied as a function of fluence and wavelength. The impact of induced absorption on the stability of continuous-wave mode-locking is considered theoretically...

متن کامل

Modeling Non-Equilibrium Dynamics and Saturable Absorption Induced by Free Electron Laser Radiation

Currently available X-ray and extreme ultraviolet free electron laser (FEL) sources provide intense ultrashort photon pulses. Those sources open new exciting perspectives for experimental studies of ultrafast non-equilibrium processes at the nanoscale in condensed matter. Theoretical approaches and computer simulations are being developed to understand the complicated dynamical processes associ...

متن کامل

Tunable Broadband Nonlinear Optical Properties of Black Phosphorus Quantum Dots for Femtosecond Laser Pulses

Broadband nonlinear optical properties from 500 to 1550 nm of ultrasmall black phosphorus quantum dots (BPQDs) have been extensively investigated by using the open-aperture Z-scan technique. Our results show that BPQDs exhibit significant nonlinear absorption in the visible range, but saturable absorption in the near-infrared range under femtosecond excitation. The calculated nonlinear absorpti...

متن کامل

Wavelength-Versatile Graphene-Gold Film Saturable Absorber Mirror for Ultra-Broadband Mode-Locking of Bulk Lasers

An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpfu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014